1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
extern crate num; use num::Float; /// `step_function` is the kind of activation functions. That is /// \\[ /// \text{step}(x) = /// \begin{cases} /// 1 & (x\gt 0) \\\\ /// 0 & (\text{otherwise}) /// \end{cases} /// \\] /// where \\(x\in\mathbb{R}\\). /// /// # e.g. /// /// ``` /// assert_eq!(true, deep_learning_playground::perceptron::single::step_function(0.1)); /// assert_eq!(false, deep_learning_playground::perceptron::single::step_function(-0.1)); /// ``` pub fn step_function<T: Float>(val: T) -> bool { if val <= T::zero() { false } else { true } } /// `logical_perceptron` is the logical perceptron. /// It can generates some logical gates (`and_perceptron`, `nand_perceptron`, `or_perceptron`) /// and generate a function that passes the sum of weighted signals /// (\\(b+X\cdot W\\) where \\(b\in\mathbb{R}\\) is a bias /// value, \\(W^{2\times 1}=\left(w_1,w_2\right)^T, X^{1\times 2}=\left(x_1,x_2\right)\\) and /// \\(w_1\\) and \\(w_2\\) are weights of \\(x_1\\) and \\(x_2\\)) to the activation function. /// /// # Arguments /// /// * `w1` - Weights for signal `x1` /// * `w2` - Weights for signal `x2` /// * `bias` - Bias that determines the ease of firing of neurons /// /// # e.g. /// /// ``` /// assert_eq!(true, deep_learning_playground::perceptron::single::logical_perceptron(&0.5, &0.5, &-0.7)(true, true)); /// assert_eq!(false, deep_learning_playground::perceptron::single::logical_perceptron(&-0.5, &-0.5, &0.7)(true, true)); /// assert_eq!(true, deep_learning_playground::perceptron::single::logical_perceptron(&0.5, &0.5, &-0.2)(true, false)); /// ``` pub fn logical_perceptron<T: Float>( w1: &'static T, w2: &'static T, bias: &'static T, ) -> Box<dyn Fn(bool, bool) -> bool> { Box::new(move |x1: bool, x2: bool| -> bool { let f = |x| if x { T::one() } else { T::zero() }; step_function(*bias + *w1 * f(x1) + *w2 * f(x2)) }) } /// `and_perceptron` generates the logical AND function. /// Let \\(p\\) and \\(q\\) are logical variables, `and_perceptron` generates the function which /// satisfies the following truth table. /// /// | \\(p\\) | \\(q\\) | `and_perceptron()(`\\(p\\)`,`\\(q\\)`)` | /// | -- | -- | -- | /// | \\(1\\) | \\(1\\) | \\(1\\) | /// | \\(1\\) | \\(0\\) | \\(0\\) | /// | \\(0\\) | \\(1\\) | \\(0\\) | /// | \\(0\\) | \\(0\\) | \\(0\\) | /// /// # e.g. /// /// ``` /// assert_eq!(true, deep_learning_playground::perceptron::single::and_perceptron()(true, true)); /// assert_eq!(false, deep_learning_playground::perceptron::single::and_perceptron()(false, true)); /// assert_eq!(false, deep_learning_playground::perceptron::single::and_perceptron()(false, false)); /// ``` pub fn and_perceptron() -> Box<dyn Fn(bool, bool) -> bool> { logical_perceptron(&0.5, &0.5, &-0.7) } /// `nand_perceptron` generates the logical NAND function. /// Let \\(p\\) and \\(q\\) are logical variables, `nand_perceptron` generates the function which /// satisfies the following truth table. /// /// | \\(p\\) | \\(q\\) | `nand_perceptron()(`\\(p\\)`,`\\(q\\)`)` | /// | -- | -- | -- | /// | \\(1\\) | \\(1\\) | \\(0\\) | /// | \\(1\\) | \\(0\\) | \\(1\\) | /// | \\(0\\) | \\(1\\) | \\(1\\) | /// | \\(0\\) | \\(0\\) | \\(1\\) | /// /// # e.g. /// /// ``` /// assert_eq!(true, deep_learning_playground::perceptron::single::nand_perceptron()(true, false)); /// assert_eq!(false, deep_learning_playground::perceptron::single::nand_perceptron()(true, true)); /// ``` pub fn nand_perceptron() -> Box<dyn Fn(bool, bool) -> bool> { logical_perceptron(&-0.5, &-0.5, &0.7) } /// `or_perceptron` generates the logical OR function. /// Let \\(p\\) and \\(q\\) are logical variables, `or_perceptron()(`\\(p\\)`,`\\(q\\)`)` generates the function which /// satisfies the following truth table. /// /// | \\(p\\) | \\(q\\) | `or_perceptron()(`\\(p\\)`,`\\(q\\)`)` | /// | -- | -- | -- | /// | \\(1\\) | \\(1\\) | \\(1\\) | /// | \\(1\\) | \\(0\\) | \\(1\\) | /// | \\(0\\) | \\(1\\) | \\(1\\) | /// | \\(0\\) | \\(0\\) | \\(0\\) | /// /// # e.g. /// /// ``` /// assert_eq!(true, deep_learning_playground::perceptron::single::or_perceptron()(true, false)); /// assert_eq!(false, deep_learning_playground::perceptron::single::or_perceptron()(false, false)); /// ``` pub fn or_perceptron() -> Box<dyn Fn(bool, bool) -> bool> { logical_perceptron(&0.5, &0.5, &-0.2) } #[cfg(test)] mod tests { use super::*; fn test_logical_gates_impl( logical_gate: &Box<dyn Fn(bool, bool) -> bool>, expected_answer: &[bool; 4], ) { let mut i: usize = 0; for b1 in [true, false].iter() { for b2 in [true, false].iter() { assert_eq!(logical_gate(*b1, *b2), expected_answer[i]); i += 1; } } } #[test] fn test_logical_gates() { test_logical_gates_impl(&and_perceptron(), &[true, false, false, false]); test_logical_gates_impl(&nand_perceptron(), &[false, true, true, true]); test_logical_gates_impl(&or_perceptron(), &[true, true, true, false]); } }